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Abstract
Given to abundant time series derived from Cy-
ber Physical Systems (CPSs), various data-driven
anomaly detection methods are proposed. Most
existing methods are focused on capturing com-
plex (e.g. temporal and inter-variable) relationships
among sensors and actuators, while ignoring the
underlying physical process which is paramount in
CPSs and is essential to reveal changes and anoma-
lies. In this work, we propose the physical pro-
cess guided graph neural networks for modeling
the hidden dynamics in CPSs and predicting time
series for anomaly detection. In detail, we design
an end-to-end auto-encoder framework for reveal-
ing the complex and dynamic changes among the
time series. Instead of traditional sensors-actuator
graph, system state graph is constructed with learn-
able and changable structure, which is more effec-
tive in model learning and time series prediction.
Experiments on real-world datasets show that the
proposed model detects anomalies more accurately
than baseline approaches.

1 Introduction
Cyber Physical Systems (CPSs) consist of computing and
physical processes which are integrated via sensors, actua-
tors and communications links to enable the control of the
underlying physical processes [Umer et al., 2022]. With the
abundant data acquisition from sensors, controllers and actu-
ators, numerous CPS time-series data are collected and can be
utilized to extract potential information or signals of anomaly.
Anomaly detection, the process of detecting unusual patterns
or unexpected behaviors, is paramount to ensure the stable
and reliable operation of CPSs.

Anomaly detection methods have attracted substantial in-
terest and can be broadly classified into two categories. On
one hand, physics-based anomaly detection methods are de-
veloped which rely on precise first-principle models or ex-
tensive expert knowledge[Giraldo et al., 2018], however, be-
come challenging due to the increasing complexity of CPSs.
On the other hand, data-driven methods have garnered sig-
nificant attention due to the benefit of abundant data acquisi-
tion from sensors, controllers, and actuators. In specific, data-

Figure 1: Cyber-Physical Systems. Actuators apply interventions to
the underlying physical process of the CPS, and sensor values are the
perception of the physical process. The association between the two
at the data level can be transformed into the relationships between
hidden system state nodes.

driven models are trained in an unsupervised way to either
reconstruct the original time series or predict the subsequent
one.

In the category of data-driven anomaly detection, meth-
ods based on machine learning (ML) and deep learning
(DL) have demonstrated effective. Confronting the com-
plex relationships within CPS, conventional ML-based meth-
ods encounter difficulties in effectively modeling intri-
cate aspects like spatial-temporal correlations.[Inoue et al.,
2017] Recently, DL-based methods exhibit efficiency in han-
dling high-dimensional multivariate time-series data, such as
DAGMM[Zong et al., 2018], MAD-GAN[Li et al., 2019],
USAD[Audibert et al., 2020], NSIBF[Feng and Tian, 2021].

However, ML-based and DL-based methods fail to capture
the inherent pairwise interdependence among variables, con-
sequently reducing their capacity to detect intricate anomaly
events. Graph neural networks (GNNs), which can explic-
itly model temporal and inter-variable relationships, pos-
sess the ability of capturing high-order complex interdepen-
dencies [Jiao et al., 2021] and have shown great promise
in CPS anomaly detection, such as GDN[Deng and Hooi,
2021], FuSAGNet[Han and Woo, 2022], MAD-SGCN[Qi et
al., 2022], Grelen[Zhang et al., 2022a] and GANF[Dai and
Chen, 2022]). However, most GNN-based anomaly detection
methods consider every sensor and actuator as an individual



node, forming a sensor-actuator graph in where node features
are derived from multivariate time series data.

In fact, the physical process, serving as the core of CPSs,
is essential to reveal changes and anomalies, but has not re-
ceived sufficient attention. As depicted in Fig.1, the underly-
ing physical process is perceived and intervened by sensors
and actuators, respectively. In other words, the time series of
sensors and actuators are derived and affected by the under-
lying physical process. Furthermore, system states inherently
represent the physical process and must adhere to specific
system dynamics, regardless of the occurrence of anoma-
lies. Consequently, the evolution of system states according
to these dynamics becomes a valuable aspect for prediction-
based anomaly detection.

How to use GNNs model the system states and their po-
tential correlations within the physical process based on time
series from sensors and actuators? There are two challenges
need to be solved: 1) system states are often unobservable and
unavailable variables, how to derive them from the observ-
able and available time series from sensors and actuators? 2)
system states will evolve following specific system dynamics,
how to represent the evolution of system states by graphs? In-
spired by system identification, we proposed a novel system
state graph to estimate the hidden system state and system
dynamics within the underlying physical process. Firstly, the
hidden system state node embeddings are generated and esti-
mated using convolution neural networks (CNNs), which em-
ploy different learnable parameters for time series of sensors
and actuators considering their diverse effects on the phys-
ical process. Secondly, motivated by [Zhang et al., 2022b],
we regard the system dynamics as a parameterized message
passing process on a given graph structure. We employ Graph
Convolutional Networks (GCNs) to illustrate the progression
of system states. The outcomes of the message passing pro-
cess are treated as estimates for predicting the system states
in the subsequent step.

In this work, we propose our novel Physical Process
Guided Graph Neural Networks for Anomaly Detection (Phy-
GAD) in CPSs. To summarize, the main contributions of our
work are:

• We predict future system states innovatively through a
message-passing mechanism, and encapsulate specific
system dynamics within a learnable and changable graph
structure influenced by both sensors and actuators.

• We introduce PhyGAD to reveal complex and dynamic
changes among the time series in an end-to-end auto-
encoder framework, in which a novel system state graph
is utilized to depict the underlying physical process.

• We demonstrate through experiments that our proposed
method outperforms the state-of-the-art methods on
anomaly detection for CPS, and show good prediction
performance even when trained on times series data
from normal but unstable system operation period.

2 Related Work
2.1 Anomaly Detection in CPSs
Initially, physics-based models are formulated by extrapo-
lating from fundamental physical equations (e.g. Newton’s
laws, fluid dynamics, or electromagnetic principles). Alterna-
tively, they can be obtained through observations employing a
methodology known as system identification (e.g. ARMAX,
linear state-space models).[Urbina et al., 2016] However, the
increasing complexity of CPSs presents a challenge in im-
plementing these approaches for anomaly detection, as their
dependence on accurate first-principle models or substantial
expert knowledge becomes impractical within this context.

Subsequently, machine learning methods that operate au-
tonomously of domain-specific knowledge and rely solely
on data have been created; however, they often struggle to
model the intricate relationships inherent in CPSs, such as
spatial-temporal correlations. [Luo et al., 2021] To this end,
deep learning-based methods have been proposed, such as
DAGMM[Zong et al., 2018], MAD-GAN[Li et al., 2019],
USAD[Audibert et al., 2020], and etc.. While the proposed
deep learning frameworks can efficiently scale through high-
dimensional multivariate time-series data, they fail to explic-
itly model the inherent pairwise interdependence among vari-
ables, thus diminishing the ability to detect complex anomaly
events. [Zheng et al., 2023]

2.2 GNN-based Anomaly detection in CPSs
GNNs, which can explicitly model inter-temporal and inter-
variable relationships, and have shown great promise in
anomaly detection [Jin et al., 2023]. However, a predefined
graph for CPSs is frequently unavailable. how to design an
appropriate graph structure to effectively model the correla-
tions among time series gradually becomes a pivotal chal-
lenge. Pioneering efforts have suggested learning and con-
structing pairwise correlation relationships among variable
pairs through either a straightforward graph learning layer
(e.g. GDN[Deng and Hooi, 2021], [Han and Woo, 2022; Qi
et al., 2022]) or a probabilistic framework (e.g. Grelen[Zhang
et al., 2022a] and GANF[Dai and Chen, 2022]).

These models have achieved good performance for
anomaly detection, whereas another important system charac-
teristic, called the dynamic property, has not been taken into
account. In fact, CPSs are essentially dynamical systems due
to their loops and feedback, highlighting the significance of
dynamic graph structures for precisely modeling system be-
haviors. [Wu et al., 2023] Although research, such as ESG
([Ye et al., 2022]), is underway to capture evolving graph
structures in multivariate time series, progress in this area re-
mains relatively restricted.

3 Proposed Framework
3.1 Problem Statement
In this paper, sensor values yt are modeled as a function h(·)
of the system state xt, with the system state itself being mod-
eled as a function f(·) of the previous instant’s system state
xt+1 [Jagannathan, 2001]. In CPS, the actuator state values
ut serve as the control inputs of the system, essentially repre-
senting feedback control of the system state. This determines



Figure 2: Overview of our proposed framework.The sensor measurements Y and actuator state values U are inputted respectively to generate
the corresponding system state embeddings. These embeddings then enter the system state structure learning stage to learn the dynamic
system state structure. During the system state update stage, the evolution of the system state is modeled. The updated system state is then
decoded for prediction. Finally, anomaly detection is performed based on the deviation of the predicted values.

that the actuator state values are a continuous function g(·) of
the system state [Haddad and Lee, 2022]. Thus, in this paper,
the following general CPSs model is considered:


xt+1 = ft(xt)

yt = h(xt)

ut = g(xt)

(1)

where xt ∈ Rn denotes the hidden system state, ut ∈ Rm de-
notes the control input that is executed by actuators, yt ∈ Rp

is the measured output. The mappings ft(·), h(·) and g(·) are
nonlinear. Of note is that ft(·) represents the dynamics that
map the state of the system forward in time and are consid-
ered time-varying.

Given to the above CPSs model, multivariate time se-
ries data of N sensors and M actuators are collected on T
time ticks, which can be denoted as S = [S1, S2, . . . , ST ],
St ∈ RN and A = [A1, A2, . . . , AT ], At ∈ RM . In each
time tick t, St = [st1; s

t
2; . . . ; s

t
N ] and At = [at1; a

t
2; . . . ; a

t
M ].

Considering the large amount of data, the times series are of-
ten processed with a sliding window of size W as the input
Yt ∈ RN×W and Ut ∈ RM×W .

Relying on the inputs Yt and Ut, our goal is to identify the
physical process underneath the data, including the hidden
states x̂t and dynamics f̂t(·) of CPSs, and its mapping rela-
tionships (e.g. ℓ(·), ĥ(·), ĝ(·)) with time series data. Thus, the
hidden system state x̂t can evolved into the next state x̂t+1

which is then converted to get the predictions of sensor and
actuator data as ŷt+1 and ût+1. Finally, anomaly detection
could be accomplished based on predictions.


x̂t(θt) = ℓθ(θt)

x̂t+1(θt) = f̂t(x̂t(θt))

ŷt+1 = ĥ(x̂t+1(Yt))

ût+1 = ĝ(x̂t+1(Ut))

(2a)

(2b)

(2c)
(2d)

It’s worth noting that the mappings between hidden states
x̂t and time series data may vary based on different types of
time series data. As a result, ℓ(·) is denoted as ℓθ depending
on the input θ. Also, the system dynamics might exhibit tem-
poral variability and are represented as f̂t(·).

3.2 Overview
PhyGAD depicts the mapping relationships between hidden
states and time series data. The system state graph G =
{V, G, Z} can be built, where V is the set of system state
nodes, G is the relation matrix and Z is the feature matrix
of nodes. Furthermore, the prediction is realized through the
evolution of system states in accordance with the system dy-
namics through the use of Graph Convolutional Networks
(GCNs). In general, PhyGAD consists of the following five
components:

1. System State Node Embedding Generation: employs
embeddings as the features of system state nodes, ob-
tained by encoding the time series of sensors and actua-
tors independently.

2. System State Structure Learning: merges the two learned
graph structures, each arising from modeling the interde-
pendencies among system state nodes derived from sen-
sors or actuators.

3. System State Update: constructs system state graphs
for sensors and actuators, respectively, and updates the



system states values by aggregating information from
neighboring nodes.

4. Value Prediction: decodes the upgraded features of sys-
tem state nodes into prediction values for the subsequent
time step values of sensors and actuators.

5. Anomaly Detection: compare the predicted values with
the actual values of sensors and actuators, and compute
an anomaly score to indicate anomalies.

3.3 System State Node Embedding Generation
Due to the different impacts of sensors and actuators on the
physical process, as depicted in Fig. 1, time series from sen-
sors and actuators have significant differences in their pat-
terns. Therefore, the system state nodes are obtained by en-
coding the time series of sensors and actuators, respectively,
and the corresponding embeddings are employed as the node
features. Following that, (2a) can be represented as :

x̂t(Yt) = ℓY (Yt) = EncY (Yt),

x̂t(Ut) = ℓU (Ut) = EncU (Ut).
(3)

Specifically, encoder EncS and EncA are dertermined as
two multi-layer 2D convolutional neural network (CNN) with
different parameters. In a convolution layer, temporal rela-
tionships within the same channel and physical correlations
between different channels are extracted simultaneously. We
utilize F filters to convolute the time series Yt and Ut using:

Zk
S = σ(Zk−1

S ∗W k
S + bkS),

Zk
A = σ(Zk−1

A ∗W k
A + bkA),

(4)

where W k
S and W k

A are the k-th filter in EncS and EncA,
which are often a small, e.g. 2 × 2 matrix with randomly
initialized values, bkS and bkA are the corresponding biases;
symbol ∗ denotes the 2D convolution operation; and σ is an
activation fucntion, k = {1, . . . ,K}, Z0

S = Yt and Z0
A = Ut.

After the convolution process, the time series Yt and Ut

are converted into embeddings, denoted as ZS
t ∈ RC×D and

ZA
t ∈ RC×D, where C and D are hyperparameters and C

refers to the number of system state nodes.

3.4 System State Structure Learning
System state structure dictates the interconnections among
system states and influences the propagation and accumula-
tion of information from neighboring nodes. Therefore, sys-
tem state structure is treated as the most important factor that
determines how the system evolves to the next time.

Because both sensors and actuators would influence the
physical process and potentially impact each others. Consider
a scenario where actuators influence the open or closed status
of a pump or valve. This action could possibly lead to water
inflow or outflow changes, ultimately altering the system dy-
namics, which subsequently affect the sensors values. Hence,
we take into account the joint influence of both sensors and
actuators on the system state structure.

To achieve this, two distinct graph structures are learned
by capturing the interdependencies among system state nodes
originating from sensors and actuators. We use relation ma-
trix GS

t and GA
t to represent the graph learned from sensors

and actuators at time t, where GS
t,ij and GA

t,ij represent the
weight of a directed edge from node i to node j in correspond-
ing graphs. To select the dependencies of sensor/actuator i at
time t, we compute the similarity between node i’s embed-
ding vector, and the embeddings of other nodes.

eSt,ji =
zSt,i⊤zSt,j

∥zSt,i∥ · ∥zSt,j∥
,

eAt,ji =
zAt,i⊤zAt,j

∥zAt,i∥ · ∥zAt,j∥
.

(5)

Then, we select the top k such normalized dot products.
Here TopK denotes the indices of top-k values among its in-
put (i.e. the normalized dot products). The value of k(k ≤ C)
can be chosen by the user according to the desired sparsity
level.

GS
t,ji = eSt,ji{j ∈ TopK({eSt,ki})},

GA
t,ji = eSt,ji{j ∈ TopK({eAt,ki})}.

(6)

Finally, these relation matrices GS
t and GA

t are merged to-
gether to form relation matrix Gt. Notably, the structure Gt

experiences temporal changes influenced by the embedding
of the sensors and actuators, making it adaptable and better
suited to capture the system dynamics.

Gt = GS
t +GA

t . (7)

3.5 System State Update
The evolution of system states in accordance with the sys-
tem dynamics is achieved using GCNs which transforms and
propagates node features ZS

t and ZA
t according to relation

matrix Gt by several layers, including linear layers and non-
linear activation.

Utilizing the merged learned system state structure Gt, in-
dividual system state graphs for sensors and actuators are
constructed as GS

t = {V, Gt, Z
S
t } and GA

t = {V, Gt, Z
A
t }.

Then, the same GCN operation is carried out on both ZS
t and

ZA
t following [Wu et al., 2020] and skip connections are used

to retain a portion of the original node features at each hop
and information aggregation is performed as follows:

H
(l)
t = βH

(0)
t + (1− β)ÃtH

(l−1)
t , H

(0)
t = Zt, (8)

where β is a hyperparameter that controls the proportion
of the original features, l is the propagation depth, Ãt =

D̃−1
t (Gt + I), and D̃t,ij = 1 +

∑
j Gt,ij .

The output of the mix-hop layer is defined as follows:

x̂t+1(Yt) =

L∑
i=0

H
S(l)
t W

(l)
S ,

x̂t+1(Ut) =

L∑
i=0

H
A(l)
t W

(l)
A ,

(9)

where L is the propagation depth and is chosen as 2, HS(l)
t

and H
A(l)
t is the operation (8) of sensors and actuators.

W
(l)
S and W

(l)
A are learnable matrices used to filter out noise

that may be introduced by information propagation between
nodes without dependency relationships.



Dataset SWaT2015 SWaT2019Jul WADI2019
Metric Prec F1 Prec F1 Prec F1

DAGMM 0.6170±0.035 0.6201±0.004 0.1489±0.010 0.2552±0.013 0.2430±0.008 0.3656±0.019
MAD-GAN 0.5029±0.032 0.6278±0.070 0.4333±0.057 0.5872±0.094 0.6789±0.437 0.2662±0.228
USAD 0.2087±0.129 0.3010±0.175 0.3986±0.093 0.4677±0.096 0.1110±0.018 0.1892±0.028
GDN 0.9630±0.033 0.7398±0.013 0.3738±0.031 0.5254±0.021 0.6175±0.077 0.4811±0.013
GANF 0.3889±0.005 0.4925±0.005 0.4504±0.034 0.5846±0.024 0.4074±0.048 0.4695±0.020

PhyGAD 0.9911±0.007 0.7843±0.012 0.6181±0.021 0.6676±0.011 0.6818±0.118 0.5001±0.022

Table 1: Anomaly detection accuracy in terms of precision and F1-score, on three datasets with ground-truth labelled anomalies.

3.6 Value Prediction
Decoders DecY and DecU are designed to transform the up-
graded features of system state nodes into prediction values
for the subsequent time step values of sensors and actuators.
According to (2c) and (2d), it can be derived that

ŷt+1 = ĥ(x̂t+1(Yt)) = DecY (x̂t+1(Yt)),

ût+1 = ĝ(x̂t+1(Ut)) = DecU (x̂t+1(Ut)).
(10)

Similar to encoder EncY and EncU , decoders DecY and
DecU consist of two multi-layer 2D CNN and extra multi-
layer perceptron(MLP) to map the data to the desired dimen-
sion. In specific, We utilize F filters to deconvolute x̂t+1(Yt)
and x̂t+1(Ut) using:

Zk
S = σ(Zk−1

S ∗W k
S + bkS),

Zk
A = σ(Zk−1

A ∗W k
A + bkA),

(11)

where k = {K + 1, . . . , 2K}, ZK
S = x̂t+1(Yt)andZ

K
A =

x̂t+1(Ut). Following an MLP, (2c) and (2d) can be derived
and represented as

ŷt+1 = σ(Z2k
S ⊤WS + bS),

ût+1 = σ(Z2k
A ⊤WA + bA).

(12)

Moreover, the loss function is minimized by using the
mean squared error (MSE) between the prediction output and
the observed data:

LMSE
t = ∥ŷt − yt∥22 + ∥ût − ut∥22. (13)

Anomaly Detection. We adopt the same method as in
GDN [Deng and Hooi, 2021] to calculates the prediction de-
viation for each sensor and actuator:

Errit =

{
∥ŷit − yit∥22, i = 1, . . . , N,

∥ûi
t − ui

t∥22, i = N + 1, . . . , N +M.
(14)

The error values for each sensor and actuator are normal-
ized:

ξit =
Errit − µ̂i

σ̂i
. (15)

where µ̂i and σ̂i represent the median and interquartile
range (IQR) in the temporal dimension. Then, the aggregated
anomaly score is calculated at time step t as:

ξt = max
i

ξit. (16)

Prec F1

GDN 0.3991±0.120 0.4991±0.065
PhyGAD 0.5348±0.274 0.5648±0.138

Table 2: Anomaly performance of models trained on startup phase
data.

4 Experiment
4.1 Experimental Setup
Datasets. Experiments are conducted on three real-world
CPS datasets, including SWaT2015, SWaT2019Jul, and
WADI2019, in which the quantity of sensors and actuators
are different.
Baseline Methods. SOTA methods include DL-based meth-
ods DAGMM [Zong et al., 2018], MAD-GAN [Li et al.,
2019], USAD [Audibert et al., 2020], and GNN-based meth-
ods GDN [Deng and Hooi, 2021] and GANF [Dai and Chen,
2022].
Implementation details. The model is trained for 50 epochs
in each time of training, and all experiments are conducted 10
times to obtain the average results. The embedding depth of
system nodes D is 16 and the number of convolutional layers
K is 4. The value of TopK is 3 for SWaT2015, and is 5 for
SWaT2019Jul and WADI2019.

4.2 Anomaly Detection Performance
The anomaly detection performance is evaluated using F1
score (F1) and precision (Prec). The results are displayed in
Table. 1. Note that each model is tested with various anomaly
score thresholds and the displayed results are the highest F1
score achieved. PhyGAD has superior performance over all
the other five baselines.

Compared to PhyGAD, DAGMM overlooks the temporal
correlation between CPS time series which is essential and
leads to lower F1 scores. MAD-GAN and USAD utilize time
frames to include temporal relationships among CPS time se-
ries. However, they rely heavily on data distributions and per-
form poorly when CPS system states exhibit temporal vari-
ability, resulting in lower precision (Prec). As for GDN, it
learns the dependency graph between sensors and actuators,
however, the dependency relationships are fixed once trained
and are not suitable for time-varing system dynamics of CPS.
Moreover, GANF is capable of learning the evolution of the



graph structure and identifying data distribution drift. How-
ever, GANF lacks the ability to capture higher-order correla-
tions within the system, leading to overall lower performance.

Furthermore, we analyse the model’s generalization capa-
bility for anomaly detection. In the SWaT2015 dataset, it re-
quires around 5-6 hours for the system to transition to a stable
state from its initial state[Goh et al., 2017], which is called
startup phase. In the startup phase, while sensors and actua-
tors operate normally, they exist in an unstable state charac-
terized by abrupt and dramatic variations in values. Hence,
we carried out experiments that the models are trained on the
data of startup phase and then implement anomaly detection
on test dataset. The results in Table 2 indicate a decline in
anormaly detection performance when the models are trained
on startup phase data. However, PhyGAD exhibit superior
generalization capability than GDN. This is attributed to Phy-
GAD’s utilization of system state graphs, encompassing the
physical process and effectively extracting higher-order sys-
tem state information. This approach avoids sole reliance on
data distribution and effectively mitigates the impact of data
distribution drift.

4.3 Ablation Analysis
To test the validity of each designed module, we give sev-
eral ablation experiments on SWaT2015, and the results are
presented in Table. 3.
Without separation of sensors and actuators. Time series
of sensors and actuators are combined into one as an input to
a single encoder. Following that, a single GCN module and a
single decoder to generate the output. The result shows a de-
crease of 8.5% in F1 score, which validates the importance of
separately processing sensors and actuators. This is because
sensors and actuators have different effects on CPS and ex-
hibit significant differences in their form and behavior. Us-
ing a single encoder to extract high-order features from both
types of data can introduce noise.
Without system state update via GCN. Once the system
state update module via GCN is removed, the model’s per-
formance metrics exhibit a decrease. Integrating neighboring
information for system state updates is recommended, as it
proves advantageous for predicting both the system state and
subsequent sensor and actuator values.
Without the merge of two learned structure for system
state graph. The merge of two learned structure from sensors
and actuators, as depicted in (7) is discarded and the system
states are updated following the original corresponding struc-
ture. The results shows a decrease of 15.4% in F1 score. This
indicates that integrating the system structures of sensors and
actuators provides richer interaction information and is vital.
Without system state node embeddings. Instead of CNN,
we use an MLP to replace the original encoder, resulting in
an embedding matrix with the same dimensions as the input
data. Also, the learned system state structure is not merged
because the number of sensors and actuators is usually not
matching. The performance decreases significantly. The F1
score performance decreases by 13.3%. This validates the im-
portance of extracting high-order features from the physical
process.

Prec F1

PhyGAD 0.9911±0.007 0.7843±0.012
- Without separation S&A 0.9872±0.006 0.7634±0.018
- Without system state update 0.9888±0.009 0.7284±0.197
- Without merge structures 0.9880±0.009 0.6627±0.259

- Without node embeddings 0.5131±0.231 0.5510±0.247

Table 3: Anomaly detection performance of PhyGAD and its vari-
ants on SWaT2015.

5 Conclusion
In our study, we proposed PhyGAD which employed a novel
system state graph to understand the hidden physical process
of CPSs. The prediction of time series for anomaly detec-
tion is carried out by predicting future system states innova-
tively via GCN. Experimental results on real-world datasets
showcase the superiority of our proposed model in accurately
detecting anomalies compared to baseline methods. This re-
search provides a new perspective for CPS time series mod-
eling graph by building physical-orient system state graph in-
stead of traditional entity-orient sensor-actuator graph.
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